High Performance DSSC Based on Semiconducting Oxides Prepared Through Soft Chemistry Processes
Dye-sensitized solar cells
TiO₂, ZnO

Water-splitting oxides
Fe₂O₃, YFeO₃

Electrochromic oxides
WO₃, NiO

Photocatalytic oxides
TiO₂

Li-ion batteries
intercalation materials
LiMn₂O₄, Vanadium oxides,
Li₄Ti₅O₁₂, LiFePO₄, Na₂FePO₄F

Supraconducting oxides
YBa₂Cu₃Oₓ

Magnetoresistive oxides
(La,Ca)MnO₃

Thermoelectric oxides
Misfit cobalt oxides, ZnO

Structural ceramics
Y-ZrO₂, BaZrO₃, mullite,…

Silicon-based photovoltaic panels recycling
RESEARCH TOPICS
www.greenmat.ulg.ac.be

Dye-sensitized solar cells
TiO₂, ZnO

Water-splitting oxides
Fe₂O₃, YFeO₃

Electrochromic oxides
WO₃, NiO

Photocatalytic oxides
TiO₂

Li-ion batteries
intercalation materials
LiMn₂O₄, Vanadium oxides,
Li₄Ti₅O₁₂, LiFePO₄, Na₂FePO₄F

Supraconducting oxides
YBa₂Cu₃Oₓ

Magnetoresistive oxides
(La,Ca)MnO₃

Thermoelectric oxides
Misfit cobalt oxides, ZnO

Structural ceramics
Y-ZrO₂, BaZrO₃, mullite,…

Silicon-based photovoltaic panels recycling

Group of Research in Energy and ENvironment from MATerials
Dye-sensitized solar cells (DSSCs) - Starting point
How do DSSCs work?
GrEEEnMAT expertise area

Research

TiO₂ mesoporous films

ZnO nanorods

5 μm 1 μm 5 μm
Dye-sensitized solar cells (DSSCs) - Starting point
How do DSSCs work?
GrEEnMAT expertise area

TiO$_2$ mesoporous films
ZnO nanorods
DYE-SENSITIZED SOLAR CELLS (DSSCs): STARTING POINT

Inspired from the nature...

PHOTOSYNTHESIS

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO₂ films

Brian O’Regan* & Michael Grätzel†

Institute of Physical Chemistry, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
DSSCs COMPONENTS

Dye

Semi-conducting oxide (TiO$_2$, ZnO)

Electrolyte

Substrate
glass - polymere - steel
DSSCs ASSEMBLY

Photoelectrode

Conducting substrate

Semiconducting oxide (TiO₂, ZnO)

Dye

Electrolyte

Sealling

Counter-electrode

Conducting substrate + Pt
How do DSSCs work?

www.thesolarspark.co.uk
Dye

Semi-conducting oxide (TiO$_2$, ZnO)

Electrolyte

Substrate
glass - polymere - steel

100 nm 100 nm 100 nm 100 nm 100 nm
Usual DSSCs: TiO$_2$ nanoparticles film

Improvement: Control of the mesostructure TiO$_2$ mesoporous films

GOAL AND STRATEGY
Goal:
Increase of current nanoparticles-based cells efficiency

STRATEGY:
Perfect tuning of the porous network
Pore size
Size and connectivity between crystallites

➔ Improvement of dye and electrolyte infiltration
➔ Increase of the surface area
➔ Enhancement of the electron transfers

Improvement:
Control of the mesostructure TiO$_2$ mesoporous films
Goal:
Increase of current nanoparticles-based cells efficiency

STRATEGY:
Perfect tuning of the porous network
Nanorods alignment

- Improvement of dye and electrolyte infiltration
- Increase of the surface area
- Enhancement of the electron transfers

Improvement:
Control of the mesostructure ZnO nanorods
Presentation overview

Dye-sensitized solar cells (DSSCs) - Starting point
How do DSSCs work?
GrEEEnMAT expertise area

Research

TiO$_2$ mesoporous films

ZnO nanorods

Group of Research in Energy and ENvironment from MATerials
Dye-sensitized solar cells (DSSCs) - Starting point
How do DSSCs work?
GrEEEnMAT expertise area
SYNTHESIS PROCESS: TEMPLATING

2 Processes:

1) EISA (Evaporation Induced Self-Assembly)

2) EIMP (Evaporation Induced Micelles Packing)
SYNTHESIS PROCESS: TEMPLATING

SOLVENT, $\text{H}_2\text{O}, \text{HCl} \uparrow$
MICELLES ORGANISATION

INORGANIC CONDENSATION

ΔT
SURFACTANT \uparrow
PORE MERGING AND CRYSTALLISATION
Influence of the Structuring Agent

<table>
<thead>
<tr>
<th>Surfactant</th>
<th>F127</th>
<th>P123</th>
<th>PSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular structure</td>
<td>(\text{PEO}{106}\text{PPO}{70}\text{PEO}_{106})</td>
<td>(\text{PEO}{20}\text{PPO}{70}\text{PEO}_{20})</td>
<td>(\text{PS}{16400}\text{PEO}{36400})</td>
</tr>
<tr>
<td>Hydrophobic part ↔ Pore size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pore size (nm)</td>
<td>4-6</td>
<td>5-7</td>
<td>19-21</td>
</tr>
</tbody>
</table>
Influence of the Relative Humidity (RH)

Low RH \(\rightarrow\) High RH

50 nm

Wormlike \(\rightarrow\) Gridlike
Mesostructure Mesostructure

Henrist C., Dewalque J., Mathis F., Cloots R.; *Micro Meso Mat*, 2009, 117 (1–2), 292
SYNTHESIS PROCESS: TEMPLATING

SOLVENT,
H₂O, HCl →
MICELLES
ORGANISATION

RH ↗ = slower evaporation → Micelles organisation ↗

INORGANIC
CONDENSATION

ΔT
SURFACTANT ↗
PORE MERGING AND
CRYSTALLISATION
4h 600°C

Collapsed mesostructure

2h 350°C

Preserved mesostructure

INFLUENCE OF THERMAL TREATMENT
PORE CONNECTIVITY PRESERVATION
AT 350°C (2H)
BY 3D TOMOGRAPHY
Monolayer film only between 100-300 nm thick
 = low developed surface
 = low amount of adsorbed dye (active material)

→ Need to increase the film thickness
→ Tuning of a multilayer deposition process
Repeated thermal treatments can induce the mesostructure degradation

- Surface area limitation
DEPOSITION

STABILISATION

15min 300°C

Stabilisation
• Solvents and volatile species evaporation
• Inorganic network condensation

Calcination
• Surfactant elimination and pores merging
• Anatase crystallisation

MULTILAYER AND REPEATED THERMAL TREATMENTS

2h 350°C
1°C/min
MULTILAYER AND REPEATED THERMAL TREATMENTS

Limitation of the surface area increase
Zukalova et al., *Nano Letters* 2005, 5, (9), 1789-1792

$\to (SC)^n$ thermal scheme
Calcination every layer

$\to (SSSC)^{n/3}$ scheme
Calcination every μm

Limitation of the mesostructure collapse
Linear increase of the surface area
High crystallinity

Pore filling during the subsequent deposition steps

Partial or full elimination of the structuring agent
⇒ Risk of pore filling

⇒ Surface area decrease
<table>
<thead>
<tr>
<th>Sample</th>
<th>Number of layer</th>
<th>Film thickness (nm)</th>
<th>Porosity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F127 wormlike</td>
<td>1 layer</td>
<td>235</td>
<td>38.5</td>
</tr>
<tr>
<td></td>
<td>3 layers</td>
<td>645</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>5 layers</td>
<td>1075</td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td>1 layer</td>
<td>110</td>
<td>40.5</td>
</tr>
<tr>
<td></td>
<td>3 layers</td>
<td>300</td>
<td>38.5</td>
</tr>
<tr>
<td></td>
<td>5 layers</td>
<td>500</td>
<td>35.5</td>
</tr>
<tr>
<td></td>
<td>10 layers</td>
<td>955</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>1 layer</td>
<td>320</td>
<td>38.5</td>
</tr>
<tr>
<td></td>
<td>3 layers</td>
<td>890</td>
<td>38.5</td>
</tr>
<tr>
<td></td>
<td>5 layers</td>
<td>1560</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>1 layer</td>
<td>380</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>3 layers</td>
<td>1030</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>5 layers</td>
<td>1820</td>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Porosity (%)</th>
<th>Dye loading (mol/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F127 wormlike, 1 µm</td>
<td>31.5</td>
<td>2.2 x 10⁻⁴</td>
</tr>
<tr>
<td>P123 wormlike, 1 µm</td>
<td>38</td>
<td>3.3 x 10⁻⁴</td>
</tr>
<tr>
<td>F127 gridlike, 1 µm</td>
<td>35.5</td>
<td>1.4 x 10⁻⁴</td>
</tr>
<tr>
<td>P123 gridlike, 1 µm</td>
<td>44</td>
<td>3.0 x 10⁻⁴</td>
</tr>
<tr>
<td>Nanopart. reference, 3.5 µm</td>
<td>/</td>
<td>1.1 x 10⁻⁴</td>
</tr>
</tbody>
</table>

P123 better than F127

Pore filling

No pore filling

MULTILAYER FILMS ➔ 1µm
Multilayer Films → 1µm

<table>
<thead>
<tr>
<th>Sample</th>
<th>Porosity (%)</th>
<th>Dye loading (mol/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F127 wormlike, 1 µm</td>
<td>31.5</td>
<td>2.2 x 10⁻⁴</td>
</tr>
<tr>
<td>P123 wormlike, 1 µm</td>
<td>38</td>
<td>3.3 x 10⁻⁴</td>
</tr>
<tr>
<td>F127 gridlike, 1 µm</td>
<td>35.5</td>
<td>1.4 x 10⁻⁴</td>
</tr>
<tr>
<td>P123 gridlike, 1 µm</td>
<td>44</td>
<td>3.0 x 10⁻⁴</td>
</tr>
<tr>
<td>Nanopart. reference, 3.5 µm</td>
<td>/</td>
<td>1.1 x 10⁻⁴</td>
</tr>
</tbody>
</table>

Wormlike better than gridlike
<table>
<thead>
<tr>
<th>Film</th>
<th>Porosity (%)</th>
<th>Dye loading (mol/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F127 wormlike, 1 µm</td>
<td>31.5</td>
<td>2.2 x 10⁻⁴</td>
</tr>
<tr>
<td>P123 wormlike, 1 µm</td>
<td>38</td>
<td>3.3 x 10⁻⁴</td>
</tr>
<tr>
<td>P123 gridlike, 1 µm</td>
<td>44</td>
<td>3.0 x 10⁻⁴</td>
</tr>
<tr>
<td>Nanopart. reference, 3.5 µm</td>
<td>/</td>
<td>1.1 x 10⁻⁴</td>
</tr>
</tbody>
</table>

Best DSSC candidate
Templating allows improving DSSC efficiency

After 2 weeks ageing

COMPARISON WITH OTHER TEMPLATED FILMS FROM THE LITERATURE

• High surface area ➔ High dye loading, even for thin layer (Optimal film thickness for solid-state DSSCs = 2µm)

• Perfect control of the film mesostructure and highly connected pores ➔ Facilitated solid electrolyte infiltration
Hierarchical porous structure for solid-state DSSC applications

Combined Soft and Hard templating

Surfactant

Ti precursor

Solid sphere

Hierarchical porous structure for solid-state DSSC applications

- Thick layers prepared from one-pot process
- Higher thickness
- Accessible and ordered pores
- Facilitated solid electrolyte infiltration (big pores)
- High surface area (small pores)

Dye-sensitized solar cells (DSSCs) - Starting point
How do DSSCs work?
GrEEEnMAT expertise area
Spin coating of ZnO seeds → ZnO nanorods hydrothermal growth → Dye impregnation and cell assembly

ZnO nanorods

Liquid electrolyte or hole conductor

Pt/F:SnO$_2$/glass

F:SnO$_2$/glass

Load

Light

5 µm

7.8 10^{13} wires/m2
INCREASE OF THE FILM SURFACE AREA AND PORE ACCESSIBILITY \(\rightarrow\) HARD TEMPLATING

Templated Growth (TG)

1. Spin coating of colloidal suspension
2. Hydrothermal growth
3. \(\Delta T\)
4. Seed layer, PS nanosphere, ZnO nanowire, FTO substrate

Surface area

<table>
<thead>
<tr>
<th>Sample</th>
<th>Dye loading (mol/mm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Templated</td>
<td>(2.43 \times 10^{-10})</td>
</tr>
<tr>
<td>Untemplated</td>
<td>(1.68 \times 10^{-10})</td>
</tr>
</tbody>
</table>

Higher efficiencies for templated cells

GrEEnMat Team

DSSC team
Dr Catherine HENRIST
Dr Pierre COLSON
Dr Jennifer DEWALQUE
Dr Audrey SCHRIJNEMAKERS
Dr Gopala THALLURI
Mr Gilles SPRONCK
Collaborations

Michael GRAETZEL (EPFL, Suisse)
Brian O’REGAN (Imperial College London, UK)
Henry SNAITH (University of OXFORD, UK)
Jean MANCA (Uhasselt, Belgium)
Peter LUND (Aalto University School of Science, Finland)
Alessandro ABBOTTO (University of Milano, Italy)
Adélio MENDES (Universidade do Porto, Portugal)
Tomas TORRES (Universidad Autonoma de Madrid, Spain)
Eva M. BAREA (Universitat Jaumes I, Spain)
Thomas BEIN (LMU Munchen, Germany)
Anders HAGFELDT (Uppsala University, Sweden)
Adelio MENDES (University of Porto, Portugal)
Frédéric SAUVAGE (Université de Picardi, France)
Thank you for your attention

Contact

Rudi Cloots : rcloots@ulg.ac.be
Pierre Colson : pierre.colson@ulg.ac.be
Catherine Henrist: Catherine.Henrist@ulg.ac.be
Jennifer Dewalque: Jennifer.Dewalque@ulg.ac.be

Website : http://www.greenmat.ulg.ac.be